Expansions of k-Schur Functions in the Affine nilCoxeter Algebra

نویسندگان

  • Chris Berg
  • Nantel Bergeron
  • Steven Pon
  • Mike Zabrocki
چکیده

We give a type free formula for the expansion of k-Schur functions indexed by fundamental coweights within the affine nilCoxeter algebra. Explicit combinatorics are developed in affine type C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The down operator and expansions of near rectangular k-Schur functions

We prove that the Lam-Shimozono “down operator” on the affine Weyl group induces a derivation of the affine Fomin-Stanley subalgebra of the affine nilCoxeter algebra. We use this to verify a conjecture of Berg, Bergeron, Pon and Zabrocki describing the expansion of k-Schur functions of “near rectangles” in the affine nilCoxeter algebra. Consequently, we obtain a combinatorial interpretation of ...

متن کامل

Combinatorial Expansions for Families of Noncommutative k-Schur Functions

We apply down operators in the affine nilCoxeter algebra to yield explicit combinatorial expansions for certain families of non-commutative kSchur functions. This yields a combinatorial interpretation for a new family of k-Littlewood-Richardson coefficients.

متن کامل

The Murnaghan-Nakayama rule for k-Schur functions

We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmet...

متن کامل

Affine Stanley symmetric functions for classical types

We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes...

متن کامل

Affine Stanley Symmetric Functions

We define a new family F̃w(X) of generating functions for w ∈ S̃n which are affine analogues of Stanley symmetric functions. We establish basic properties of these functions such as their symmetry and conjecture certain positivity properties. As an application, we relate these functions to the k-Schur functions of Lapointe, Lascoux and Morse as well as the cylindric Schur functions of Postnikov. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2012